
User’s Guide for 4ti2 version 1.6.10

A software package

for algebraic, geometric and combinatorial problems on linear spaces

July 15, 2023

Contents

1 Beginner’s guide 5

1.1 Linear systems and their encodings 5

1.1.1 Linear systems and integer linear systems 5

1.1.2 Specifying a linear system in 4ti2 6

1.1.3 What does an explicit solution to linear systems look like? . . 7

1.2 Brief tutorial . 8

1.2.1 Solving linear systems over Z with zsolve 8

1.2.2 Solving linear systems over Q with qsolve 10

1.2.3 Computing extreme rays and Hilbert bases 10

1.2.4 Computing circuits and Graver bases 14

1.2.5 Integer programming and toric Gröbner bases 17

1.2.6 Markov Bases in Statistics . 19

2 Advanced guide 23

2.1 Affine systems and their encodings 23

3 Command-line reference 25

3.1 circuits . 25

3.2 genmodel . 26

3.3 gensymm . 27

3.4 graver . 28

3

CONTENTS 4

3.5 groebner . 29

3.6 hilbert . 30

3.7 markov . 31

3.8 minimize . 32

3.9 normalform . 33

3.10 output . 34

3.11 ppi . 35

3.12 qsolve . 36

3.13 rays . 37

3.14 walk . 38

3.15 zbasis . 39

3.16 zsolve . 40

4 4ti2 as a callable library 41

4.1 C API header file: 4ti2/4ti2.h . 41

4.2 Example program: zsolve . 41

4.3 Example program: qsolve . 42

5 README: Instructions on configuring and building 4ti2 43

6 NEWS: Changes to 4ti2 since version 1.2 47

AUTHORS: The 4ti2 team 53

THANKS 54

Bibliography 56

Chapter 1

Beginner’s guide

In this part, we use a few sample problems to introduce you to the basic functionality

of 4ti2. After working through this part, you should know about linear systems and

their encodings in 4ti2, and should be able to do computations using the following

functions:

� qsolve, rays, circuits

� zsolve, hilbert, graver, ppi

� minimize, groebner, normalform

� genmodel, markov

1.1 Linear systems and their encodings

In this section you learn about the data structure linear system and how it is

specified in 4ti2.

1.1.1 Linear systems and integer linear systems

In 4ti2, a linear system is defined by d constraints Ax ∼ b in n unknowns x, where

each constraint is either ≤, = or ≥, that is ∼ ∈ {≤,=,≥}d. Moreover, one may

5

1.1. Linear systems and their encodings 6

specify sign constraints on the variables that need to be respected in an explicit

continuous/integer representation of all solutions.

There is no particular difference in 4ti2 between a linear system and an integer

linear system. Currently, the user chooses between one of the two by calling the

appropriate functions on the linear system.

1.1.2 Specifying a linear system in 4ti2

In order to use a linear system as input, we need to specify its parts to 4ti2. As our

running example, take (
1 1 1 1

1 2 3 4

)
x
≤
≤

(
6

10

)

with sign constraints (1, 2, 2, 0), which we will explain below.

First, we have to give our problem a project name, say PROJECT.

� The matrix A has to be put into the file PROJECT.mat.

2 4

1 1 1 1

1 2 3 4

� The relations ∼ then have to be specified in PROJECT.rel.

1 2

< <

� The right-hand side vector goes into PROJECT.rhs.

1 2

6 10

� And finally, the sign constraints end up in PROJECT.sign.

1 4

1 2 2 0

Chapter 1. Beginner’s guide 7

Note.

� The input files all have the format of a matrix, preceded by the matrix di-

mensions. As the dimensions already specify how many symbols have to be

read, the matrix could also be given in only one line or even in many lines of

different lengths.

� In 4ti2 version 1.3.1 and later, all appearing numbers have to be integers.

� Consequently, this implies that, at the moment, qsolve only supports homoge-

neous linear systems, that is systems with b = 0, since minimal inhomogeneous

solutions could have rational components.

1.1.3 What does an explicit solution to linear systems look

like?

If the system is solved over R (using qsolve), 4ti2 returns two sets of integer

vectors:

� a set H of support-minimal homogeneous solutions, and

� a set F defining the linear vector space the solution set lives in.

As only homogeneous linear systems are supported in this version of 4ti2, no list of

minimal inhomogeneous solutions is computed. Any solution z of the linear system

can now be written as

z =
∑

αjhj +
∑

βkfk (1.1)

with hj ∈ H, fk ∈ F , and αj ≥ 0.

If the system is solved over Z (using zsolve), 4ti2 returns three sets of integer

vectors:

� a set H of minimal homogeneous integer solutions,

� a set I of minimal inhomogeneous integer solutions, and

� a set F defining the sublattice of Zn the solution set lives in.

1.2. Brief tutorial 8

Any solution z of the linear system can now be written as

z = i+
∑

αjhj +
∑

βkfk (1.2)

for some i ∈ I and with hj ∈ H, fj ∈ F , and αj ∈ Z+.

Sign file. Let us finally clarify what the sign file PROJECT.sign is good for. The

sign file may declare a variable to be non-negative (1), to be non-positive (−1), or

to consider both cases independently and unite the answers (2). If a nonzero sign

has been assigned to a variable, the explicit representations (1.1) and (1.2) above

of a solution z have to respect the sign on that variable. The default setting for

each variable is 0 (when using qsolve and zsolve), that is, the sign need not be

respected in the explicit representation. In our example above, the first variable

is declared to be non-negative, the second and the third one expand to 2 · 2 = 4

orthant constraints, and the fourth variable is unconstrained. Note, however, that

4ti2 does not decompose the problem internally into the four problems with sign

patterns (1, 1, 1, 0), (1, 1,−1, 0), (1,−1, 1, 0), and (1,−1,−1, 0), but deals with them

more efficiently at the same time.

1.2 Brief tutorial

1.2.1 Solving linear systems over Z with zsolve

In this example you learn about the function zsolve.

Let us have a look at the linear system

x − y ≤ 2

−3x + y ≤ 1

x + y ≥ 1

y ≥ 0

over Z. We have to create the files encoding the linear system. Let us call our project

system. Then the input files look as follows:

Chapter 1. Beginner’s guide 9

system.mat system.rel system.rhs system.sign

3 2

1 −1

−3 1

1 1

1 3

< < >

1 3

2 1 1

1 2

0 1

Then we call

4ti2-zsolve system

This call creates two files

system.zinhom system.zhom

4 2

0 1

2 0

1 0

1 1

3 2

1 1

1 2

1 3

which correspond to the explicit description of all integer solutions:

Feasible solutions Computed representation
y = 3x + 1

y = x - 2 y = x - 2

y = 3x + 1

{(
1

0

)
,

(
2

0

)
,

(
0

1

)
,

(
1

1

)}
+monoid

((
1

1

)
,

(
1

2

)
,

(
1

3

))
.

Note that in the pictures above, we are only interested in the lattice points inside

the colored regions! The full regions are colored only for the purpose of visualizing

the covering of all feasible integer solutions by finitely many shifted copies of the

monoid

monoid

((
1

1

)
,

(
1

2

)
,

(
1

3

))
.

1.2. Brief tutorial 10

1.2.2 Solving linear systems over Q with qsolve

qsolve solves linear systems over Q; however, note that it only supports homoge-

neous linear systems, that is, systems with b = 0.

4ti2-qsolve system

This call creates files

system.qhom system.qfree

To solve an inhomogeneous system Ax = b, x ≥ 0, you (still) need to do some work

yourself:

1. Solve system Ax− bu = 0, x ≥ 0, u ≥ 0 using qsolve.

2. Keep those solutions with u = 0. (These generate the recession cone (of un-

bounded directions).

3. Normalize those solutions with u > 0 to have u = 1 (by dividing the vector

by u). Be aware that this could create rational numbers.

4. Drop the u-component.

Any solution to Ax = b, x ≥ 0 can then be obtained by adding one solution from 3.

to a nonnegative linear combination of solutions from 2.

1.2.3 Computing extreme rays and Hilbert bases

In this example you learn about the functions rays and hilbert. (They are conve-

nient versions of qsolve and zsolve for particular cases.)

Let us consider the set of magic 3 × 3 squares with non-negative real entries, that

is, the set of all 3× 3 arrays with non-negative real entries whose row sums, column

sums, and main diagonal sums all add up to the same number, the magic constant

of the square.

Chapter 1. Beginner’s guide 11

Clearly, addition of two magic squares gives another magic square, as well as does

multiplication of a magic square by a non-negative number. Therefore, we may talk

about the cone of magic 3 × 3 squares. In fact, this cone is a pointed rational

polyhedral cone described by the linear system

x11 + x12 + x13 = x21 + x22 + x23

= x31 + x32 + x33

= x11 + x21 + x31

= x12 + x22 + x32

= x13 + x23 + x33

= x11 + x22 + x33

= x31 + x22 + x13

xij ≥ 0, for all i, j = 1, 2, 3.

Bringing all xij to the left-hand side of these equations, the matrix A3×3 defining

this linear system is

A3×3 =



1 1 1 −1 −1 −1 0 0 0

1 1 1 0 0 0 −1 −1 −1

0 1 1 −1 0 0 −1 0 0

1 0 1 0 −1 0 0 −1 0

1 1 0 0 0 −1 0 0 −1

0 1 1 0 −1 0 0 0 −1

1 1 0 0 −1 0 −1 0 0


.

Below, we will deal with the more interesting case of integer magic squares. For the

moment, however, we wish to compute the extreme rays of the magic square cone

{z : A3×3z = 0, z ≥ 0}.

In order to call the function rays, we only have to create one file, say magic3x3.mat,

in which we specify the problem matrix A3×3. The remaining data is set by default to

1.2. Brief tutorial 12

”equations only”, to ”homogeneous system”, and to ”all variables are non-negative”.

Note that we are allowed to change these defaults (except homogeneity) by specifying

data in magic3x3.rel and magic3x3.sign

magic3x3.mat

7 9

1 1 1 −1 −1 −1 0 0 0

1 1 1 0 0 0 −1 −1 −1

0 1 1 −1 0 0 −1 0 0

1 0 1 0 −1 0 0 −1 0

1 1 0 0 0 −1 0 0 −1

0 1 1 0 −1 0 0 0 −1

1 1 0 0 −1 0 −1 0 0

Now we call

4ti2-rays magic3x3

which creates the single file

magic3x3.ray

4 9

0 2 1 2 1 0 1 0 2

1 2 0 0 1 2 2 0 1

2 0 1 0 1 2 1 2 0

1 0 2 2 1 0 0 2 1

that corresponds to the four extremal rays of the 3× 3 magic square cone:

1

0 2 1

012

1 0 2

1 2 0

2

10

10

2

2 0 1

210

1 2 0 0

2

1 0

2 1

0

2

Every magic 3 × 3 square is a non-negative linear combination of these four magic

squares.

If we turn now to integer magic squares, we are looking for a Hilbert basis of the

3 × 3 magic square cone. As the default settings for hilbert are the same as for

rays, we can use the same input file

Chapter 1. Beginner’s guide 13

magic3x3.mat

7 9

1 1 1 −1 −1 −1 0 0 0

1 1 1 0 0 0 −1 −1 −1

0 1 1 −1 0 0 −1 0 0

1 0 1 0 −1 0 0 −1 0

1 1 0 0 0 −1 0 0 −1

0 1 1 0 −1 0 0 0 −1

1 1 0 0 −1 0 −1 0 0

for this computation. However, to compute the Hilbert basis, we call

4ti2-hilbert magic3x3

which creates the single output file

magic3x3.hil

5 9

0 2 1 2 1 0 1 0 2

1 2 0 0 1 2 2 0 1

2 0 1 0 1 2 1 2 0

1 0 2 2 1 0 0 2 1

1 1 1 1 1 1 1 1 1

that corresponds to the five elements in the minimal Hilbert basis of the 3×3 magic

square cone:

1

0 2 1

012

1 0 2

1 2 0

2

10

10

2

2 0 1

210

1 2 0 0

2

1 0

2 1

0

2

1 1

111

1

1 1 1

1.2. Brief tutorial 14

Every integer magic 3 × 3 square is a non-negative integer linear combination of

these five integer magic squares. Note that the all-1 square is in the interior of the

magic square cone.

See [2, section 3.8] or [6] for details on the algorithm implemented.

1.2.4 Computing circuits and Graver bases

In this example you learn about the functions graver, ppi, and circuits.

As an example of a Graver basis computation, let us compute the primitive partition

identities of order n = 4. Before we do the simple computation, let us explain what

a primitive partition identity is.

A partition identity is any identity of the form

a1 + . . .+ ak = b1 + . . .+ bl

with (generally not distinct) integer numbers 0 < ai, bj ≤ n. A partition identity is

called primitive if no proper subidentity exists.

For example,

1 + 2 + 3 = 2 + 2 + 2

is a partition identity which is not primitive, since it contains the subidentity

1 + 3 = 2 + 2

which is in fact primitive.

The description of the primitive partition identities for fixed n, however, is exactly

the description of the Graver basis of the matrix

An =
(

1 2 3 . . . n
)
.

Let us finally do the computation for n = 3. We create an input file ppi3 for 4ti2

which looks as follows:

ppi3.mat

1 3

1 2 3

Chapter 1. Beginner’s guide 15

and call

4ti2-graver ppi3

This call will create an output file ppi3.gra that looks like:

ppi3.gra

5 3

3 0 −1

2 −1 0

0 3 −2

1 1 −1

1 −2 1

Thus, there are 5 primitive partition identities of order n = 3:

1 + 1 + 1 = 3

1 + 1 = 2

2 + 2 + 2 = 3 + 3

1 + 2 = 3

1 + 3 = 2 + 2

You may try and compute the primitive partition identities for bigger n, say n = 17,

20, or 23. Be aware, especially the latter two problems take a long, long time. What

is the biggest n for which you can compute the primitive partition identities of order

n on your machine within one hour?

Due to the very special structure of the matrix, there are algorithmic speed-ups

[4, 10, 13]. The currently fastest algorithm to compute primitive partition identities

is implemented in the function ppi of 4ti2. Try running

4ti2-ppi 17

which creates two files ppi17.mat (so we do not really have to create this file our-

selves) and the file ppi17.gra containing the desired identities. Compare this run-

ning time with the time taken by

1.2. Brief tutorial 16

4ti2-graver ppi17

Do you notice the speed-up?

Let us now turn to the question of determining the support-minimal partition iden-

tities. This, in fact, is the question of computing the circuits of the matrix

An =
(

1 2 3 . . . n
)
.

We use the same input file

ppi3.mat

1 3

1 2 3

as above and call

4ti2-circuits ppi3

This call will create an output file ppi3.cir that looks like:

ppi3.cir

3 3

3 0 −1

2 −1 0

0 3 −2

Thus, there are 3 support-minimal partition identities of order n = 3:

1 + 1 + 1 = 3

1 + 1 = 2

2 + 2 + 2 = 3 + 3

Note that support-minimal partition identities are primitive, since the circuits of a

matrix are contained in the Graver basis of this matrix.

See the book [2, section 3.8], or Hemmecke [7] for details on the algorithm imple-

mented.

Chapter 1. Beginner’s guide 17

1.2.5 Integer programming and toric Gröbner bases

In this example you learn about the functions minimize, groebner, and normalform.

The following neat example is based on the example presented in [12]. Let us assume

that we want to give change worth 99 cents using only pennies (1ct), nickels (5ct),

dimes (10ct), and quarters (25ct). Clearly,

4 · 1 + 4 · 5 + 0 · 10 + 3 · 25 = 99

would be one way to do it. Is this there another choice of 11 coins that sums up to

99ct but uses fewer nickels and quarters (in total)? In other words, we would like to

solve

min{x2+x4 : x1+x2+x3+x4 = 11, x1+5x2+10x3+25x4 = 99, x1, x2, x3, x4 ∈ Z+}

Let us set up the problem in 4ti2.

4coins.mat 4coins.zsol 4coins.sign 4coins.cost

2 4

1 1 1 1

1 5 10 25

1 4

4 4 0 3

1 4

1 1 1 1

1 4

0 1 0 1

Note that we do not have to specify a relations file 4coins.rel, since already by

default all relations are assumed to be equations. Now we simply call

4ti2-minimize 4coins

which creates the single output file

4coins.min

1 4

4 1 4 2

From this, we conclude that

4 · 1 + 1 · 5 + 4 · 10 + 2 · 25 = 99

is an optimal choice, using only 3 instead of 7 nickels and quarters.

1.2. Brief tutorial 18

Remark. Earlier versions of 4ti2 allowed to specify the right-hand side vector in

a file called 4coins.rhs, instead of giving a solution in 4coins.zsol. This is no

longer supported. □

Since we already know a feasible solution, there is another way we might attack this

problem, namely via toric Gröbner bases. (See [2, Chapter 11] for an introduction to

toric ideals and their Gröbner bases, and also their generalizations, lattice ideals.)

For this, we first need to specify the matrix A and the cost vector c in the two files

4coins.mat and 4coins.cost:

4coins.mat 4coins.cost

2 4

1 1 1 1

1 5 10 25

1 4

0 1 0 1

Then we compute the Gröbner basis of the toric ideal

IA = ⟨xu − xv : Au = Av, u, v ∈ Z4
+⟩

with respect to a term ordering ≺ compatible with c, that is, c⊺v < c⊺u implies

xv ≺ xu. This toric Gröbner basis is computed by

4ti2-groebner 4coins

and gives the output file

4coins.gro

Remark. Many algorithm options are available and can be selected by command-

line options of groebner, see section 3.5. As reference to the algorithms we recom-

mend the book [2, section 11.4] or Hemmecke and Malkin [8], as well as Bigatti,

LaScala, and Robbiano [1], Gebauer and Möller [3], and Hoşten and Sturmfels [9].

Since runnning times of the various algorithms are hard to predict, it may for some

hard problems make sense to start several computations in parallel, each with dif-

ferent algorithms. □

Then we specify our feasible solution in

Chapter 1. Beginner’s guide 19

4coins.feas

1 4

4 4 0 3

and call

4ti2-normalform 4coins

to produce the file

4coins.nf

1 4

4 1 4 2

that also contains the desired optimal solution.

Remark. We could also specify a list of feasible solutions in 4coins.feas. Then

the call

4ti2-normalform 4coins

creates a file 4coins.nf containing the minima to the corresponding integer pro-

grams. (If z0 is a feasible solution, the corresponding integer program is defined by

putting the right-hand side to Az0.) □

1.2.6 Markov Bases in Statistics

In this example you learn about the functions markov and genmodel.

Let us consider the following 4 × 4 table of non-negative integer numbers together

with all row and column sums.
11 23 34 3

4 15 12 11

17 2 3 25

16 12 22 7


71

42

47

57

48 52 71 46

1.2. Brief tutorial 20

In statistics, one wishes to sample among arrays that have fixed counts, say fixed row

and column sums. In order to sample, one needs a set of moves that, in particular,

do not change the counts when added to the current table. Clearly, these moves

must have counts 0 and thus quite naturally lead us to the toric ideal

IA = ⟨xu − xv : Au = Av, u, v ∈ Z16
+ ⟩,

where

A =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


.

It turns out that for any set of fixed counts, a (minimal) Markov basis is given by

a minimal generating set of this toric ideal. Note that a Markov basis connects all

non-negative tables with these counts in the sense that for any two non-negative

tables T1 and T2 with these counts, there is a sequence of non-negative tables T1 =

S0, . . . , SN = T2 with the same counts as T1 and T2 and such that Si − Si−1 or

Si−1 − Si is in the Markov basis for i = 1, . . . , N .

For two-way tables the situation is still very simple as our computations with 4× 4

tables will now demonstrate. Write the matrix that defines our toric ideal in the file

4x4.mat:

4x4.mat

8 16

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Chapter 1. Beginner’s guide 21

Let us compute the Markov basis via the call

4ti2-markov 4x4

which creates a single output file 4x4.mar containing the 36 Markov basis elements.

Up to symmetry (swapping rows or columns), the Markov basis consists of the single

move 
1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

 .

In fact, this elementary move is (up to symmetry) the only representative of the

minimal Markov moves for arbitrary m× n tables using row and column counts.

Creating the matrices for statistical models may be pretty cumbersome. 4ti2 pro-

vides a litte function, genmodel, that helps the user with creating matrices for

hierarchical models defined by a complex.

The m × n tables problem above corresponds to the complex {{1}, {2}} on two

nodes with levels m and n, respectively. Let us encode the complex for 3× 6 tables

with 1-marginals (row and column sums) in 3x6.mod.

3x6.mod

3

3 6

2

1 1

1 2

and call

4ti2-genmodel 3x6

to produce the desired matrix file 3x6.mat.

The encoding of the complex should be obvious from the example: first we state the

number of nodes and their levels, then we give the number of maximal faces. Finally,

1.2. Brief tutorial 22

we list each maximal face by first specifying the number of nodes on it and then by

listing these nodes.

Thus, a 3×4×6 table with 2-marginals (that is, again only counts along coordinate

axes) corresponds to the complex {{(1, 2)}, {(2, 3)}, {(3, 1)}} on 3 nodes with levels

3, 4, and 6, respectively. Thus, its encoding is in 4ti2 would look like:

3x4x6.mod

3

3 4 6

3

2 1 2

2 2 3

2 3 1

A binary model on the bipartite graph K2,3 then reads as

k2 3.mod

5

2 2 2 2 2

6

2 1 3

2 1 4

2 1 5

2 2 3

2 2 4

2 2 5

Chapter 2

Advanced guide

In this part, we deal with several more advanced problem specifications in 4ti2.

First we introduce affine systems and their encodings. In fact, affine systems are

the basic objects used in 4ti2, since every linear system is transformed into an

affine system. However, in the integer situation, it is not always possible to trans-

form an affine system back into a linear system without adding variables or modulo

constraints.

2.1 Affine systems and their encodings

Let a + LZ be an “integer linear affine space” given by the vector a ∈ Zn and

by generators for the lattice LZ ⊆ Zn. We wish to find a finite sign-compatible

description for the set of all (integer) vectors x ∈ a+ LZ.

As an example, let consider the linear space LR and the lattice LZ both spanned

by the two vectors (1,−2, 1, 0) and (2,−3,−0, 1). Moreover, consider the sign-

constraints (1, 2, 2, 0). Thus, we are looking for a finite explicit sign-compatible

description for all x that can be written as

x =


1 2

−2 −3

1 0

0 1

λ,

23

2.1. Affine systems and their encodings 24

with λ ∈ R2 and λ ∈ Z2, respectively.

In order to solve this affine system using zsolve, we create the following input files

to encode the affine system:

affine.lat affine.sign

2 4

1 −1 1 0

2 −3 0 1

1 4

1 2 2 0

and then call

4ti2-zsolve affine

This creates the files affine.zhom and affine.zinhom.

Chapter 3

Command-line reference

3.1 circuits

25

3.2. genmodel 26

3.2 genmodel

Chapter 3. Command-line reference 27

3.3 gensymm

3.4. graver 28

3.4 graver

Chapter 3. Command-line reference 29

3.5 groebner

3.6. hilbert 30

3.6 hilbert

Chapter 3. Command-line reference 31

3.7 markov

3.8. minimize 32

3.8 minimize

Chapter 3. Command-line reference 33

3.9 normalform

3.10. output 34

3.10 output

Chapter 3. Command-line reference 35

3.11 ppi

3.12. qsolve 36

3.12 qsolve

Chapter 3. Command-line reference 37

3.13 rays

3.14. walk 38

3.14 walk

Chapter 3. Command-line reference 39

3.15 zbasis

3.16. zsolve 40

3.16 zsolve

Chapter 4

4ti2 as a callable library

Some portions of 4ti2 can be used as a callable library to avoid I/O and process

overhead. It has a simple C API that closely mirrors the commands: qsolve, rays,

circuits, zsolve, hilbert, graver.

Depending on its configuration, 4ti2 builds and installs several libraries, either as

static or shared libraries, using libtool.

The functions equivalent to zsolve, hilbert, graver require the use of libzsolve.

The functions equivalent to qsolve, rays, circuits require the use of lib4ti2common

and, depending on the arithmetic precision requested, the use of lib4ti2int32,

lib4ti2int64, or lib4ti2gmp.

4.1 C API header file: 4ti2/4ti2.h

A single header file, <4ti2/4ti2.h>, provides the C API. It is reproduced below for

reference.

4.2 Example program: zsolve

Example programs using the C API can be found in the source tree of 4ti2, in the

directories test/qsolve/api and test/zsolve/api.

Below we reproduce the example program test/zsolve/api/test zsolve api.cpp.

41

4.3. Example program: qsolve 42

4.3 Example program: qsolve

Below we reproduce the example program test/qsolve/api/qsolve main.cpp.

Chapter 5

README: Instructions on

configuring and building 4ti2

4ti2 -- A software package for algebraic, geometric and combinatorial

problems on linear spaces.

Copyright (C) 1998, 2002, 2006, 2015 4ti2 team.

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

COMPILING 4ti2

==============

43

44

Run the following commands with the 4ti2 directory:

./configure --prefix=INSTALLATION-DIRECTORY

make

make check

make install-exec

The final command will install 4ti2 in a directory tree below the

INSTALLATION-DIRECTORY that you gave with the first command. If you

omit the --prefix option, ‘make install’ will install 4ti2 in the

/usr/local hierarchy.

You will need glpk and gmp installed first (see below).

The first command, ’make’, compiles all the executables. The second

command, ’make check’, runs a lot of automatic checks. This will take

a while. If a check fails, then please notify the 4ti2 team.

You will need gcc version 3.4 or higher.

You will need an installed version of glpk (linear programming software). See

the website http://www.gnu.org/software/glpk for more information. The

version 4.7 has been tested. If you do not have glpk installed or 4ti2 cannot

find glpk, then the compilation will fail saying that it cannot find the file

"glpk.h". If you have installed glpk but not in a location that 4ti2 finds by

default, then you will need to invoke

./configure --with-glpk=/ROOT/OF/GLPK/INSTALLATION/HIERARCHY

You will also need an installed version of gmp, The GNU MP

Bignum Library, with c++ support enabled (see http://www.swox.com/gmp/ for more

details). Versions 4.2.1 and 4.1.4 have been tested. If you are compiling a

version of gmp from the source, make sure that you enable c++ support

(--enable-cxx configure option). If you have

installed gmp but not in a location that 4ti2 finds by default, then you

Chapter 5. README: Instructions on configuring and building 4ti2 45

will need to invoke

./configure --with-gmp=/ROOT/OF/GMP/INSTALLATION/HIERARCHY

If you have gmp but not with c++ support, then ./configure will

fail with an error saying that the file "gmpxx.h" cannot be found.

USING MACPORTS ON MAC OS X

==========================

Use the following commands.

sudo port install gmp glpk

./configure --with-gmp=/opt/local --with-glpk=/opt/local

make

sudo make install

INSTALLATION ON WINDOWS USING CYGWIN

====================================

1. Install Cygwin from https://www.cygwin.com/

In the installer, select the following packages:

Devel: gcc-core gcc-g++ make

Math: glpk gmp libglpk-devel libgmp-devel

2. Make sure you unpack the 4ti2 sources into a

C:\DIRECTORY\WITHOUT\SPACES\IN\IT

(for example, C:\4ti2)

3. Open the Cygwin terminal

4. Type:

46

cd /cygdrive/c/DIRECTORY/WITHOUT/SPACES/IN/IT

./configure

make

make install

5. Now you can run 4ti2’s commands from the Cygwin terminal.

DOCUMENTATION

=============

See the manual or the website http://www.4ti2.de for information on using 4ti2.

Chapter 6

NEWS: Changes to 4ti2 since

version 1.2

News in 4ti2 version 1.6.9, compared to 1.6.8:

* Updates to test suite.

* qsolve/groebner code: More detailed warnings for PROJECT

vs. PROJECT.mat

* Fix out of bounds vector access in circuits.

Reported by Jerry James for Fedora.

News in 4ti2 version 1.6.8, compared to 1.6.7:

* Updates to test suite and build.

* Fix _4ti2_rays_create_state, _4ti2_circuits_create_state.

Reported by Alfredo Sanchez-R. Navarro.

* Merge Debian patch for PATH_MAX on Hurd.

Patch from Jerome Benoit.

News in 4ti2 version 1.6.7, compared to 1.6.6:

47

48

* Add missing amsabbrvurl.bst file required for rebuilding the documentation.

Reported by Jerome Benoit for Debian.

* Add tests for "walk -p arb" to testsuite

* Build fix for Debian bug 801117 (underlinked library).

Patch from Jerome Benoit.

* Fix division-by-zero in "walk -p arb" for testcase 344.

Reported by Jerome Benoit for Debian.

News in 4ti2 version 1.6.6, compared to 1.6.5:

* Fix segfault in graver when a matrix with trivial kernel is input

(testcase graver/trivial-kernel).

Reported by Alfredo Sanchez.

News in 4ti2 version 1.6.5, compared to 1.6.4:

* Fix build failure with gcc 4.9.2.

News in 4ti2 version 1.6.4, compared to 1.6.3:

* Improved error checking while reading zsolve input files.

Reported by Sebastian Gutsche.

* The PDF manual has been updated to include a reference to commands

and their options and a reference to the API. The command

reference on www.4ti2.de has also been updated.

* Better option handling. Make long options available in non-GNU

platforms such as Mac OS X. All commands now support the

standard --help and --version options.

* Minor fix to the test suite.

Chapter 6. NEWS: Changes to 4ti2 since version 1.2 49

Reported by Luis David Garcia-Puente.

News in 4ti2 version 1.6.3, compared to 1.6.2:

* The manual has been updated.

* Minor build fixes.

News in 4ti2 version 1.6.2, compared to 1.6.1:

* Use GLPK’s new glp_* API instead of the old lpx_* API (declared

obsolete in glpk 4.47 and removed in 4.52).

(Patch by Jerry James for Fedora.)

News in 4ti2 version 1.6.1, compared to 1.6:

* Compile fix for XCode 5.0.2, Apple LLVM version 5.0 (clang-500.2.79).

News in 4ti2 version 1.6, compared to 1.5.2:

* Restore the functionality of "hilbert" in versions up to 1.3.2 to

accept "rel" files. This signalled an error in the 1.4 and 1.5 series.

(Note that "zsolve" did accept "rel" files in the 1.4 and 1.5 series.)

* When the cone is not pointed, "hilbert" now outputs a "zfree" file,

containing a lattice basis, in addition to the "hil" file.

Note that in the non-pointed case, Hilbert bases are not uniquely

determined. Let zfree_1, ..., zfree_k be the vectors in the "zfree"

file and hil_1, ..., hil_l be the vectors in the "hil" file.

Then a Hilbert basis of the non-pointed cone is

hil_1, ..., hil_l, -(hil_1 + ... + hil_l), zfree_1, ..., zfree_k.

(In the 1.3 series, "hilbert" silently appended the lattice

generators to the "hil" file. Thus the list of vectors in the

"hil" file was not a Hilbert basis of the non-pointed cone; this

50

was a bug. Note that "zsolve" did work correctly in the 1.3

series.)

* Fix a bug of zsolve and hilbert on 64-bit platforms (where

sizeof(unsigned long) > sizeof(int)), which affected problems with

more than 32 variables and could lead to wrong results. (Testcases

a1, dutour-testcase-2013-08-21).

* Accept longer filenames.

* Enable shared library builds on the Cygwin platform (using the

libtool -no-undefined flag). (However, this requires that shared

libraries of GMP, GLPK are available.)

* Use gnulib to provide getopt_long if not available in the

system libraries.

* If the C++ compiler does not have int32_t and int64_t, use int and

long int instead.

* Fixed bug in lattice transformation with too few rows.

(Reported by Jerry James for Fedora.)

* Fix a build failure with gcc 4.7.

(Patch by Jerry James for Fedora.)

News in 4ti2 version 1.5.2, compared to 1.5.1:

* Build a GMP-only 4ti2 if the C++ compiler does not have int32_t and int64_t.

News in 4ti2 version 1.5.1, compared to 1.5:

* Fix a build problem with --enable-shared.

Chapter 6. NEWS: Changes to 4ti2 since version 1.2 51

News in 4ti2 version 1.5, compared to 1.4:

* Latest version of new qsolve.

News in 4ti2 version 1.4, compared to 1.3.2:

* Portability fixes

* New abstract C and C++ API (callable library), header files in 4ti2/

* New implementation of zsolve in C++

News in 4ti2 version 1.3.2, compared to 1.3.1:

* New build system, using GNU Autoconf, Automake, and Libtool.

This allows 4ti2 to be built using the standard "./configure &&

make && make install" sequence.

* Bug fixes

* Portability fixes (for GCC versions 4.3.x and 4.4.x)

News in 4ti2 version 1.3.1, compared to 1.2:

* ’groebner’ and ’markov’ are again heavily improved.

* ’groebner’ and ’markov’ allow non-homogeneous lattice ideals.

* ’groebner’ and ’markov’ allow truncation.

* There is a new function ’walk’ performing a Groebner walk.

52

* There are new functions ’qsolve’ and ’zsolve’ for solving linear

systems over the reals or the integers, respectively.

* There are new functions ’rays’ and ’circuits’ to compute extreme

rays and circuits.

* The functions ’circuits’ and ’graver’ allow to fix certain

orthants.

* One may compute with projections by specifying variables to be

ignored.

* There is a new function ’minimize’ to solve integer linear

programs.

AUTHORS: The 4ti2 team

Ralf Hemmecke

Raymond Hemmecke

Matthias Koeppe

Peter Malkin

Matthias Walter

53

54

THANKS

Many thanks to Kris Nairn for suggesting the name ’4ti2’. Cool. :-)

Moreover, lots of thanks to many 4ti2 users for suggesting many

interesting and useful improvements.

55

56

Bibliography

[1] A. M. Bigatti, R. LaScala, and L. Robbiano, Computing toric ideals, Journal

of Symbolic Computation 27 (1999), 351–365.

[2] J. A. De Loera, R. Hemmecke, and M. Köppe, Algebraic and geometric ideas in

the theory of discrete optimization, MOS–SIAM Series on Optimization, Society

for Industrial and Applied Mathematics, Philadelphia, PA, 2013, doi:10.1137/

1.9781611972443, ISBN 978-1-61197-243-6.

[3] R. Gebauer and H. M. Möller, On an installation of Buchberger’s algorithm,

Journal of Symbolic Computation 6 (1988), 275–286.

[4] U.-U. Haus, M. Köppe, and R. Weismantel, A primal all-integer algorithm based

on irreducible solutions, Math. Programming, Series B 96 (2003), no. 2, 205–

246.

[5] R. Hemmecke, Exploiting symmetries in the computation of Graver bases, 2004,

arXiv:math.CO/0410334.

[6] R. Hemmecke, On the computation of Hilbert bases of cones, Mathematical

Software, ICMS 2002 (A. M. Cohen, X. S. Gao, and N. Takayama, eds.), World

Scientific, 2002.

[7] , On the positive sum property and the computation of Graver test sets,

Math. Programming, Series B 96 (2003), 247–269.

[8] R. Hemmecke and P. N. Malkin, Computing generating sets of lattice ideals and

Markov bases of lattices, Journal of Symbolic Computation 44 (2009), 1463–

1476.

57

http://dx.doi.org/10.1137/1.9781611972443
http://dx.doi.org/10.1137/1.9781611972443
http://arxiv.org/abs/math.CO/0410334

BIBLIOGRAPHY 58

[9] S. Hoşten and B. Sturmfels, GRIN: An implementation of Gröbner bases for

integer programming, Integer Programming and Combinatorial Optimization

(E. Balas and J. Clausen, eds.), Lecture Notes in Computer Science, vol. 920,

Springer Berlin Heidelberg, 1995, pp. 267–276, doi:10.1007/3-540-59408-6_

57, ISBN 978-3-540-59408-6.

[10] M. Köppe, Erzeugende Mengen für gemischt-ganzzahlige Programme, Diploma

thesis, Otto-von-Guericke-Universität Magdeburg, 1999, available from URL

http://www.math.ucdavis.edu/~mkoeppe/art/mkoeppe-diplom.ps.

[11] P. N. Malkin, Truncated Markov bases and Gröbner bases for integer program-

ming, 2006, arXiv:math/0612615.

[12] B. Sturmfels, Algebraic recipes for integer programming, 2003, arXiv:math.OC/

0310194.

[13] R. Urbaniak, Decomposition of generating sets and of integer programs, Disser-

tation, Technische Universität Berlin, 1998.

http://dx.doi.org/10.1007/3-540-59408-6_57
http://dx.doi.org/10.1007/3-540-59408-6_57
http://www.math.ucdavis.edu/~mkoeppe/art/mkoeppe-diplom.ps
http://arxiv.org/abs/math/0612615
http://arxiv.org/abs/math.OC/0310194
http://arxiv.org/abs/math.OC/0310194

BIBLIOGRAPHY 59

	Beginner's guide
	Linear systems and their encodings
	Linear systems and integer linear systems
	Specifying a linear system in 4ti2
	What does an explicit solution to linear systems look like?

	Brief tutorial
	Solving linear systems over Z with zsolve
	Solving linear systems over Q with qsolve
	Computing extreme rays and Hilbert bases
	Computing circuits and Graver bases
	Integer programming and toric Gröbner bases
	Markov Bases in Statistics

	Advanced guide
	Affine systems and their encodings

	Command-line reference
	circuits
	genmodel
	gensymm
	graver
	groebner
	hilbert
	markov
	minimize
	normalform
	output
	ppi
	qsolve
	rays
	walk
	zbasis
	zsolve

	4ti2 as a callable library
	C API header file: 4ti2/4ti2.h
	Example program: zsolve
	Example program: qsolve

	README: Instructions on configuring and building 4ti2
	NEWS: Changes to 4ti2 since version 1.2
	AUTHORS: The 4ti2 team
	THANKS
	Bibliography

